first phrase
This commit is contained in:
173
reproject/analyzer.py
Normal file
173
reproject/analyzer.py
Normal file
@@ -0,0 +1,173 @@
|
||||
import cv2
|
||||
import mediapipe as mp
|
||||
import time
|
||||
import numpy as np
|
||||
from collections import deque
|
||||
from geometry_utils import calculate_ear, calculate_mar_simple, estimate_head_pose, LEFT_EYE, RIGHT_EYE
|
||||
from face_library import FaceLibrary
|
||||
|
||||
|
||||
try:
|
||||
from new_emotion_test import analyze_emotion_with_hsemotion
|
||||
HAS_EMOTION_MODULE = True
|
||||
except ImportError:
|
||||
print("⚠️ 未找到 new_emotion_test.py,情绪功能将不可用")
|
||||
HAS_EMOTION_MODULE = False
|
||||
|
||||
class MonitorSystem:
|
||||
def __init__(self, face_db):
|
||||
# 初始化 MediaPipe
|
||||
self.mp_face_mesh = mp.solutions.face_mesh
|
||||
self.face_mesh = self.mp_face_mesh.FaceMesh(
|
||||
max_num_faces=1,
|
||||
refine_landmarks=True,
|
||||
min_detection_confidence=0.5,
|
||||
min_tracking_confidence=0.5
|
||||
)
|
||||
|
||||
# 初始化人脸底库
|
||||
self.face_lib = FaceLibrary(face_db)
|
||||
|
||||
# 状态变量
|
||||
self.current_user = None
|
||||
|
||||
# --- 时间控制 ---
|
||||
self.last_identity_check_time = 0
|
||||
self.IDENTITY_CHECK_INTERVAL = 2.0
|
||||
|
||||
self.last_emotion_check_time = 0
|
||||
self.EMOTION_CHECK_INTERVAL = 3.0
|
||||
|
||||
# --- 历史数据 ---
|
||||
self.HISTORY_LEN = 5
|
||||
self.ear_history = deque(maxlen=self.HISTORY_LEN)
|
||||
self.mar_history = deque(maxlen=self.HISTORY_LEN)
|
||||
|
||||
# 缓存上一次的检测结果
|
||||
self.cached_emotion = {
|
||||
"label": "detecting...",
|
||||
"va": (0.0, 0.0)
|
||||
}
|
||||
|
||||
def _get_smoothed_value(self, history, current_val):
|
||||
"""内部函数:计算滑动平均值"""
|
||||
history.append(current_val)
|
||||
if len(history) == 0:
|
||||
return current_val
|
||||
return sum(history) / len(history)
|
||||
|
||||
def process_frame(self, frame):
|
||||
"""
|
||||
输入 BGR 图像,返回分析结果字典
|
||||
"""
|
||||
h, w = frame.shape[:2]
|
||||
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
|
||||
results = self.face_mesh.process(rgb_frame)
|
||||
|
||||
analysis_data = {
|
||||
"has_face": False,
|
||||
"ear": 0.0,
|
||||
"mar": 0.0,
|
||||
"pose": (0, 0, 0),
|
||||
"identity": self.current_user,
|
||||
"emotion_label": self.cached_emotion["label"],
|
||||
"emotion_va": self.cached_emotion["va"]
|
||||
}
|
||||
|
||||
if not results.multi_face_landmarks:
|
||||
self.ear_history.clear()
|
||||
self.mar_history.clear()
|
||||
return analysis_data
|
||||
|
||||
analysis_data["has_face"] = True
|
||||
landmarks = results.multi_face_landmarks[0].landmark
|
||||
|
||||
# 计算 EAR
|
||||
left_ear = calculate_ear([landmarks[i] for i in LEFT_EYE], w, h)
|
||||
right_ear = calculate_ear([landmarks[i] for i in RIGHT_EYE], w, h)
|
||||
raw_ear = (left_ear + right_ear) / 2.0
|
||||
|
||||
# 计算 MAR
|
||||
top = np.array([landmarks[13].x * w, landmarks[13].y * h])
|
||||
bottom = np.array([landmarks[14].x * w, landmarks[14].y * h])
|
||||
left = np.array([landmarks[78].x * w, landmarks[78].y * h])
|
||||
right = np.array([landmarks[308].x * w, landmarks[308].y * h])
|
||||
raw_mar = calculate_mar_simple(top, bottom, left, right)
|
||||
|
||||
# --- 使用 History 进行数据平滑 ---
|
||||
smoothed_ear = self._get_smoothed_value(self.ear_history, raw_ear)
|
||||
smoothed_mar = self._get_smoothed_value(self.mar_history, raw_mar)
|
||||
|
||||
# 计算头部姿态
|
||||
pitch, yaw, roll = estimate_head_pose(landmarks, w, h)
|
||||
|
||||
analysis_data.update({
|
||||
"ear": round(smoothed_ear, 4),
|
||||
"mar": round(smoothed_mar, 4),
|
||||
"pose": (int(pitch), int(yaw), int(roll))
|
||||
})
|
||||
|
||||
now = time.time()
|
||||
|
||||
# --- 身份识别 ---
|
||||
if now - self.last_identity_check_time > self.IDENTITY_CHECK_INTERVAL:
|
||||
xs = [l.x for l in landmarks]
|
||||
ys = [l.y for l in landmarks]
|
||||
# 计算人脸框
|
||||
face_loc = (
|
||||
int(min(ys) * h), int(max(xs) * w),
|
||||
int(max(ys) * h), int(min(xs) * w)
|
||||
)
|
||||
pad = 20
|
||||
face_loc = (max(0, face_loc[0]-pad), min(w, face_loc[1]+pad),
|
||||
min(h, face_loc[2]+pad), max(0, face_loc[3]-pad))
|
||||
|
||||
match_result = self.face_lib.identify(rgb_frame, face_location=face_loc)
|
||||
if match_result:
|
||||
self.current_user = match_result["info"]
|
||||
self.last_identity_check_time = now
|
||||
|
||||
analysis_data["identity"] = self.current_user
|
||||
|
||||
# --- 情绪识别 ---
|
||||
if HAS_EMOTION_MODULE and (now - self.last_emotion_check_time > self.EMOTION_CHECK_INTERVAL):
|
||||
if results.multi_face_landmarks:
|
||||
landmarks = results.multi_face_landmarks[0].landmark
|
||||
xs = [l.x for l in landmarks]
|
||||
ys = [l.y for l in landmarks]
|
||||
|
||||
# 计算裁剪坐标
|
||||
x_min = int(min(xs) * w)
|
||||
x_max = int(max(xs) * w)
|
||||
y_min = int(min(ys) * h)
|
||||
y_max = int(max(ys) * h)
|
||||
|
||||
pad_x = int((x_max - x_min) * 0.2)
|
||||
pad_y = int((y_max - y_min) * 0.2)
|
||||
|
||||
x_min = max(0, x_min - pad_x)
|
||||
x_max = min(w, x_max + pad_x)
|
||||
y_min = max(0, y_min - pad_y)
|
||||
y_max = min(h, y_max + pad_y)
|
||||
|
||||
face_crop = frame[y_min:y_max, x_min:x_max]
|
||||
|
||||
if face_crop.size > 0:
|
||||
try:
|
||||
emo_results = analyze_emotion_with_hsemotion(face_crop)
|
||||
|
||||
if emo_results:
|
||||
top_res = emo_results[0]
|
||||
self.cached_emotion["label"] = top_res.get("emotion", "unknown")
|
||||
self.cached_emotion["va"] = top_res.get("vaVal", (0.0, 0.0))
|
||||
|
||||
except Exception as e:
|
||||
print(f"情绪分析出错: {e}")
|
||||
|
||||
self.last_emotion_check_time = now
|
||||
|
||||
analysis_data["emotion_label"] = self.cached_emotion["label"]
|
||||
analysis_data["emotion_va"] = self.cached_emotion["va"]
|
||||
|
||||
return analysis_data
|
||||
Reference in New Issue
Block a user